
Cybersecurity & Firewall Manager Documentation

Overview

Overview
Introduction - Welcome to CFM

Models

Models Overview

API Routes

API routes

Artisan Commands and Scheduled Tasks (Crons)

Artisan Commands
Scheduled Tasks / Cron and Supervisor settings

DataFeedProcessor
Admin Interface
Configuration
Integration / Agent Guide
Testing
FAQ / Common Scenarios
Notification handling

Notifications & Triggers

CFM



Project purpose, structure, key components

Overview



Overview

# CFM Project Overview

## Purpose
CFM is a Security - Firewall Management project designed to manage spam detection, blocklists,
feed processing, and admin control using a web interface.

## Layers
- Models: Handle data and relationships
- Controllers: Process web/API requests
- Commands: Automate backend tasks
- Filament: Admin UI for managing keywords, feeds, and settings
- Routes: Web and API access
- Cron Jobs: Scheduled feed updates and maintenance

## Key Features
- Spam keyword detection (loose & strict modes)
- Blocklist/whitelist management (IP and domain-based)
- Feed processing system (with logging and rule generation)
- Central API for querying blocklists
- Admin UI for managing everything
- Clamav Rule generation
- Phishlist database
- RBLDNS database
- Hash Management (MD5 / SHA1 / SHA2) for Clamav signatures
- Mail filters
- Synchronizing files to server through agents
- Updating lists through agents
- Manage global user unblocking

 

 

This documentation is organized by feature and component to help understand and extend the
system.

Overview



Overview

CFM is a powerful system for managing threat intelligence, spam filtering, phishing protection, and
reputation data — backed by automation and agent-based sync.

Blocklist & Whitelist Management (IP & domain)
Reverse DNS, ASN, GeoIP, and country resolution
Keyword-based spam detection
Phishing URL detection & logging

Scheduled feed imports, auto-deletion, and rule generation
Commands for IP list generation, rule updates, config sync
Cron-style job scheduling with overlap protection

Syncs config and rule files
Reports blocks, unblocks, and last seen
Triggers service restarts after updates
Integrates with unblock portal for auto-removal
Sends Slack alerts for offline agents

Introduction - Welcome to
CFM
�� CFM Feature Summary

��️ Security & Threat Intelligence

�� Automation & Scheduling

��️ Agent Infrastructure (C++-Based)



Generates ClamAV signatures from phishing URLs and file hashes (MD5/SHA1/SHA256)
Maintains SpamAssassin-compatible phishing DB
Exports RBL and URIBL zones for RBLDNSD

Token-authenticated API for:
Checking block status
Reporting blocks/unblocks
Fetching rules/feeds
Submitting config/trigger reports

Optional rate limiting and IP filtering

Dashboard with real-time widgets and charts
Interfaces for:

Spam keywords
Block/allow lists
Feed logs
Unblock requests
Agent activity

Public-facing Unblock Request Form
Feed endpoints (IP, domain, phishing, etc.)
Admin redirect and login flow

File-based config sync with integrity hashing
Config-targeting for agent groups
Slack alerts and activity logs

�� Antivirus & RBL Integration

�� API & External Access

�� Admin Panel (Filament)

�� Web Interface

�� Bonus Features



Multi-source feed support (manual, API, auto)

✅  Blocklist & Whitelist Management
Manage IPs and domains across multiple lists, including manual entries, feed imports, and API-
reported threats.

✅  Spam & Phishing Protection

Keyword-based spam filtering (supports Greek/Greeklish, loose/strict)
Maintains a live phishing URL database
Generates ClamAV-compatible virus definitions from phishing URLs and file hashes
(MD5/SHA1/SHA256)

✅  RBL & URIBL Generator
Creates real-time blocklists and URI lists (RBLDNSD format) for DNS-based blacklisting — used by
SpamAssassin, Postfix, etc.

✅  GeoIP Intelligence for Blocklist Entries
Automatically resolves:

Reverse DNS (PTR)
ASN and ISP
Country and region This enables rich filtering, analytics, and decision-making.

✅  Automated Feed Processing
Processes threat feeds on a schedule with logs and rule generation.

✅  Agent Communication & API
Lightweight agents (or servers) can:

Report blocked IPs back to CFM
Fetch updates and policy
Submit files, triggers, logs, etc.

✅  Dashboard with Widgets & Metrics
Summarized view of:

Top IPs by country or source
Phishing trends
Recent feed activity
System health and jobs

�� Key Features



✅  Unblock Request Portal
Public-facing form for users to request delisting — reviewed via admin panel.

✅  Full Admin UI via Filament
Modern interface for managing:

Spam keywords
Feeds & logs
Phishing database
Block/allow lists
Scheduled jobs
Settings & tokens

✅  Scheduled Jobs & Artisan Tools

Generate IP and domain blocklists
Run cleanup jobs
Sync filesystem configs
Rebuild ClamAV signatures
Trigger per-feed processing

✅  Agent Infrastructure (C++ Powered)
Includes high-performance C++ agents deployed on remote servers that:

�� Sync configuration and rule files from CFM
�� Report blocked and unblocked IPs
�� Remove blocks upon updates or unblocks
♻️ Restart services (e.g., mail, firewall) when needed
�� Report "last seen" heartbeat to monitor health
�� Trigger Slack alerts if an agent goes offline
�� Integrate with the public unblock form to re-allow mistakenly blocked users

✅  Blocklist & Whitelist Management
Manage IPs and domains across multiple lists (manual, API, or feed-driven), enriched with PTR,
ASN, country, and GeoIP.

✅  Phishing & Spam Defense

Greek-aware spam keyword detection (strict/loose)
Maintains a phishing URL database
Generates ClamAV virus signatures from URLs and hashes (MD5/SHA1/SHA256)
Exports phishing data for SpamAssassin compatibility

✅  RBL & URIBL Generation
Creates and serves real-time DNS blacklists (RBLDNSD format) for both IP and domain-based
blocklists.



✅  Scheduled Feed Ingestion & Rule Generation
Automates external feed syncing and keyword/rule building via Laravel Scheduler and Artisan
commands.

✅  Admin Dashboard
Modern UI with dashboard widgets, charts, and management panels for:

Blocked items
Keyword rules
Feed logs
Unblock requests
Agent status

✅  Unblock Request Portal
Frontend form where blocked users can request removal — triggers backend unblock workflows
and agent sync.

✅  API Interface
Secure, token-authenticated API to:

Check IP/domain status
Report blocks/unblocks
Pull feed or rule updates
Trigger diagnostics or config checks

✅  ClamAV + CSF Integration
Outputs live files for:

IP blocklists ( csf.deny )
ClamAV custom signatures
RBLDNSD-based DNS lists

Slack integration for agent down alerts
Per-country analytics of blocked IPs
Top reporters / sources breakdown
File-based config sync and hashing
Agent group targeting for rules

�� Bonus Features

�� Use Cases



Internal spam firewall
Self-hosted RBL/URIBL provider
CSF / UFW / iptables blocklist hub
Aggregator for multiple threat feeds
Email security gateway enhancement
Coordinated threat response via reporting agents

Laravel + Filament (UI)
MySQL (DB)
Tailwind (optional UI)
GeoLite2 (GeoIP)
Artisan + Laravel Scheduler
RBLDNSD & SpamAssassin compatibility
API-first design

�� Built With



Model summaries, fields, relationships, usage

Models



Models

This project includes the following Eloquent models, each representing a key part of the system's
architecture:

Model Purpose / Description

Agent Represents remote scanning or reporting agents.

AgentGroup Groups agents for easier configuration and targeting.

AutoDeleteRule Defines automatic deletion logic for old data.

Blocklist Stores IPs flagged as malicious or suspicious.

Config Represents configuration entries, either file-based or
database-based.

ConfigTarget Associates configs with agents or systems.

DataFeed Represents external data sources (e.g., threat intel feeds).

ExecutionTarget Tracks where specific actions or rules were executed.

Hash Handles hash-based uniqueness or matching logic.

MailFeeder Ingests and analyzes email headers or body content.

MailFromFilter Applies filtering rules based on mail sender.

Notifier Manages alerts and notifications.

PhishList Stores phishing domains or URLs.

RbldnsdUri Manages RBLDNSD-compatible URI blocklists/whitelists.

SpamKeyword Contains keyword rules for spam detection
(Greek/Greeklish/etc.).

Token Access tokens for API or agent auth.

Trigger Defines rule triggers and conditions.

UnblockRequest Handles user-submitted unblock appeals.

User Represents authenticated users in the system.

Models Overview



Route list, methods, paths, expected input/output

API Routes



API Routes

These routes provide a secure, token-authenticated interface for interacting with blocklists, agent
configurations, and unblocking systems.

All routes are protected via the TokenAuthentication  middleware.

All API endpoints require a valid token passed via headers or parameters.

Method Path Description

POST /blocklist/report Report an IP to be blocked

POST /blocklist/unblock Request removal of an IP from
blocklist

GET /blocklist/check Check if an IP is blocked

GET /blocklist/fetch Fetch all blocklisted IPs

Method Path Description

POST /whitelist/report Report a whitelisted IP or domain

POST /whitelist/remove Remove a record from the whitelist

API routes
API Routes

�� Authentication

�� Blocklist Endpoints

�� Whitelist Endpoints



Method Path Description

GET/POST /agent/config-check Validate agent config from server side

GET/POST /agent/list-files List tracked files for integrity checks

GET /blocklist/pending-unblocks Fetch unblock requests for review

POST /blocklist/unblock-confirm Confirm that an IP was unblocked

These routes form the backbone of external system interaction with the CFM platform, especially
useful for:

Server agents checking their config
Security automation scripts reporting IPs
Unblock portals submitting requests for delisting

These routes handle the core frontend and admin-facing interactions, including redirects, unblock
forms, and feed outputs.

Method Path Behavior

GET / Redirects to /admin  if logged in,
otherwise to /admin/login

Method Path Description

GET /unblock Shows unblock request form

POST /unblock Submits unblock request to backend

Used by users or systems mistakenly blocked to appeal removal.

��️ Agent Endpoints

�� Web Routes

�� Root Redirect

�� Public Unblock Interface



Accessible only with valid token via TokenAuthentication .

Method Path Description

GET /whitelist.txt IP/domain whitelist

GET /blacklist.txt IP blacklist (for CSF, etc.)

GET /phishlist.txt Phishing domain list

GET /domainblacklist.txt Domain blocklist for RBLDNSD

GET /domainwhitelist.txt Domain whitelist for RBLDNSD

�� Feed Files (Token Protected)



Command list, arguments/options, usage

Artisan Commands and
Scheduled Tasks (Crons)



Artisan Commands and Scheduled Tasks (Crons)

CFM includes a number of custom Laravel Artisan commands to help automate and manage
blocklists, phishing detection, feed ingestion, and other system behaviors.

To view available commands, use the following in your project root:

Below is an overview of the key command groups available in CFM:

Command Description

agents:check-notifications Checks the last-seen status of each agent and sends
notifications (e.g., Slack) if any are down.

Command Description

autodelete:run Runs AutoDeleteJob  to remove old records (e.g., blocklist
entries, logs) based on custom rules.

Artisan Commands
Command Line Commands
(Artisan)

php artisan

�� agents

��️ autodelete



Command Description

blocklist:fetch-geodata Bulk fetches GeoIP data for blocklist entries (country, ASN,
etc.).

blocklist:resolve-geodata Resolves GeoIP data with optional processing limits for
batching.

blocklist:resolve-ptr Resolves PTR (Reverse DNS) records for IPs in batches.
Parallel processing supported.

Command Description

cache:clear Clears the Laravel application cache.

Command Description

clamav:generate-signatures Generates ClamAV-compatible signature files from
phishing URLs and malware file hashes (MD5, SHA1,
SHA256).

�� blocklist

�� cache

�� clamav

⚙️ config
This section may include config sync-related commands, depending on future
additions.“



Command Description

data-feeds:fetch Fetches and processes all active data feeds configured in
the system.

import:blocklist Imports a list of IPs into the blocklist, whitelist, or greylist.

import:domains Imports domains into the blocklist or whitelist.

import:mail-filters Imports email sender/domain filters from a file.

Command Description

iplists:generate Generates whitelist.txt , greylist.txt , and blacklist.txt  files
from the database for CSF or DNS use.

Command Description

mailfromfilters:generate Generates mailfromfilters.cf  used by the mail filtering
system, based on DB entries.

Command Description

spamassassin:generate-rules Generates a SpamAssassin custom keyword rule file from
the spam_keywords  table. Supports strict and loose
matching, Greek normalization, etc.

�� data-feeds

�� iplists

�� mailfromfilters

�� spamassassin



These commands allow you to maintain and automate your security infrastructure directly from the
console, and can be scheduled or run on-demand as needed.

 



Artisan Commands and Scheduled Tasks (Crons)

Scheduled tasks are defined in routes/console.php  and executed using Laravel's schedule:run
command. They can be run via a cron shell script or with a process manager like Supervisor.

#!/bin/bash
cd "$(dirname "$0")"
php artisan schedule:run >> /dev/null 2>&1

Service file: supervisor.service

 

[Unit]
Description=Supervisor process control system for UNIX
After=network.target

 

[Service]
ExecStart=/usr/bin/supervisord -n -c /etc/supervisor/supervisord.conf
ExecStop=/usr/bin/supervisorctl $OPTIONS shutdown
ExecReload=/usr/bin/supervisorctl -c /etc/supervisor/supervisord.conf $OPTIONS reload
Restart=on-failure
RestartSec=50s

Program config: /etc/supervisor/conf.d/cfm.conf

Scheduled Tasks / Cron and
Supervisor settings
⏱ ️ Scheduled Commands (Cron)

Shell Cron Example:

Supervisor Setup (Recommended)



[program:cfm]
command=php /home/cfm/artisan queue:work redis --memory=2048 --tries=3 --timeout=600
user=cfm
autostart=true
autorestart=true
numprocs=2
redirect_stderr=true
stdout_logfile=/var/log/supervisor/cfm.log

 

 

Command Schedule Description

iplists:generate Every 10 minutes Generate updated IP lists from the DB

clamav:generate-signatures Hourly at :50 Generate ClamAV signature files

agents:check-notifications Every minute Check agent status and send alerts

autodelete:run Daily at 08:00 Run AutoDelete cleanup job

config:sync-storage Every 5 minutes Sync configuration files from disk

blocklist:resolve-ptr Every 10 minutes Resolve PTR records in batches

blocklist:resolve-geodata Every 10 minutes Resolve ASN/Country data in bulk

unblocks:cleanup Every 5 minutes Cleanup old unblock requests

phishlist:generate Every 30 minutes Regenerate phishing domain list

mailfromfilters:generate Hourly Regenerate mailfromfilters.cf

execution:dispatch Every minute Dispatch queued execution rules

DataFeedJob (callback) Every minute Dispatch data feed jobs for active
feeds

These scheduled commands are critical for keeping data up-to-date, automating cleanup, syncing
feeds and configurations, and dispatching jobs to agents or queues.

 

Scheduled Commands



How the core logic handles feeds

DataFeedProcessor



Pages, forms, tables, actions

Admin Interface



.env setup, configs, scheduler, RBL settings

Configuration



How external systems use the API or CLI

Integration / Agent Guide



Example API tests, test scenarios

Testing



Troubleshooting, usage examples

FAQ / Common Scenarios



How the system handles and works around with notifications.

Notification handling



Notification handling

The CFM Notifications System monitors the availability of network agents and provides
customizable alerting when agents go offline or recover. It also integrates with user-triggered
unblock request monitoring, helping administrators stay informed about potential abuse or
false positives in blocking behavior.

The system is composed of four coordinated components:

1. Agent Uptime Monitoring Controller
2. Notifier Configuration Resource
3. Trigger Mechanism Resource
4. Unblock Request Monitoring

These components work together to detect agent status changes, define notification methods, and
execute appropriate alerting workflows.

Component: AgentNotificationController

This controller is responsible for continuously checking the status of registered agents. It does so
by comparing each agent's last heartbeat timestamp ( last_seen_at ) against the current time. If an
agent hasn't communicated within a predefined time window (e.g., 60 seconds), it is considered
offline.

Notifications & Triggers
�� CFM Notifications System
Overview

1. �� Agent Uptime Monitoring

Key Behaviors



Recovery Detection: If an agent previously marked as offline starts reporting again, the
system logs a restoration event.
Outage Detection: Agents not seen in the defined window are marked as down.
Notification Throttling: Notifications are suppressed if a recent alert was already sent
(e.g., within the past hour), avoiding redundant notifications.

Component: NotifierResource

This resource allows administrators to configure various notification channels, which define how
alerts are sent.

Email
Slack
Webhook
Custom API callouts

Each notifier contains:

A unique name.
A target configuration (e.g., email address or webhook URL).
A type identifier (used to trigger the appropriate method).
Optionally, a list of tags or filters to determine relevance to specific agents.

Component: TriggerResource

This module acts as the brain of the notification system, determining when and which
notifications should be triggered based on agent status changes.

Linkage between triggers and notifiers (one-to-many).

2. �� Notifier Configuration

Supported Notifier Types (examples):

3. �� Trigger Mechanism

Core Features



Conditions: Triggers can be configured to react only to specific types of status changes
(e.g., only on downtime, or both up/down events).
Tag Matching: Allows targeting subsets of agents based on metadata.
Last Notified Tracking: Stores timestamps of previous alerts per trigger-agent pair to
control re-alerting frequency.

Integration Point: UnblockController  (external module)

This integration captures and processes unblock requests submitted by end users who are
temporarily blocked by the system (e.g., via CSF or custom firewall logic).

Alerting on Unblock Attempts: Notifies admins when a user requests to be unblocked.
Request Outcome Visibility: Indicates if the user:

Was indeed blocked and unblocked.
Was never blocked.
Has requested unblocking too frequently (possible abuse).

Escalation Signals: Excessive or suspicious unblock activity can flag issues for deeper
inspection.

This feature provides security teams with real-time context on potentially malicious or misbehaving
clients.

To protect system integrity and minimize attack surface:

Internal logic is abstracted and modularized to reduce exposure.
Logging is selectively enabled and avoids sensitive data leakage.
Time-based checks and cooldown intervals prevent alert spam or abuse.
All external interactions (e.g., sending to Slack or webhooks) should be validated and rate-
limited.
All external outbound notifications should be validated and rate-limited.
Unblock request alerts help detect misuse or false positive blocks.

4. �� Unblock Request Monitoring

Features

�� Security Considerations



1. The Agent Uptime Controller routinely checks agent heartbeat timestamps.
2. If a status change is detected (up or down), it invokes the Trigger Mechanism.
3. The Trigger Mechanism determines if and which notifications should be sent, based on

tag matching and cooldown logic.
4. Matched Notifiers are executed asynchronously or in queue, depending on system setup.
5. If a user requests unblocking, an internal event is logged and optionally notifies admins

based on thresholds or flags.

⚙️ Workflow Summary


